From 1 - 2 / 2
  • We compare the formulation and emergent dynamics of 11 CMIP6 IPCC marine biogeochemical models. We find that the largest source of uncertainty across model simulations of marine carbon cycling is grazing pressure (i.e. the phytoplankton specific loss rate to grazing). Variability in grazing pressure is driven by large differences in zooplankton specific grazing rates, which are not sufficiently compensated for by offsetting differences in zooplankton specific mortality rates. Models instead must tune the turnover rate of the phytoplankton population to balance large differences in top-down grazing pressure and constrain net primary production. We then run a controlled sensitivity experiment in a global, coupled ocean-biogeochemistry model to test the sensitivity of marine carbon cycling to this uncertainty and find that even when tuned to identical net primary production, export and secondary production remain extremely sensitive to grazing, likely biasing predictions of future climate states and food security.

  • Ecosystem data was collected as part of an integrated study of the continental shelf over a 2 and a half year period between November 2015 and January 2018. Data were collected bi-monthly through the spring to autumn (November, January, March, May). Stations were situated perpendicular to shelf bathymetry, ranging in depth from ~50 m to 100 m near the edge of the shelf and were located between 5 km and 15 km from land; encompassing from south Storm Bay, past the southern tip of Bruny Island and into the Southern Ocean (south-east Tasmania, Australia). Data collected focused on each trophic level, characterizing the zooplankton community, fish schools and marine predators. The overarching aim of the study was to investigate the effects of long term warming, and a marine heatwave event on zooplankton dynamics in terms of community response variables and the flow-on effects of changing lower-trophic level dynamics for top predators.