COASTAL PROCESSES
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
-
This record provides an overview of the NESP Marine and Coastal Hub small-scale study - "A national inventory of implemented nature-based solutions to mitigate coastal hazards". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Climate change and population growth are accelerating the need for diverse solutions to coastal protection. Traditionally, shorelines are armoured with conventional "hard" or "grey" engineering structures such as seawalls which are non-adaptive and come with significant economic, environmental and social costs. While hard structures will continue to have a place in coastal protection, alternative methods that are more sustainable and climate-resilient should be more broadly adopted into the future where appropriate. Living shorelines harness natural ecosystems to reduce coastal erosion and flooding and provide co-benefits such as carbon sequestration. They may consist of dunes, wetlands and biogenic reefs: either alone (‘soft approach’) or in combination with hard structures (‘hybrid approach’). To date, nature-based solutions have been underutilised in Australia, due at least in part to decision-makers needing clearer guidelines for when a soft, hybrid or hard coastal defence approach is most appropriate. This resulted in the publication of a foundational guide (led by Morris and Swearer and delivered under ESCC Hub Project 5.9: Natural habitats for coastal protection and carbon sequestration) to inform the national use of nature-based methods for coastal hazard risk reduction. In the process of producing these guidelines, the lack of a national inventory of coastal protection projects already using nature-based methods was identified by end-users as a priority to enable their wider adoption as an adaptation strategy in Australia. This project generated an online inventory of all current and planned on-ground actions by coastal land managers that have implemented a nature-based solution (NBS) to mitigate coastal hazards. From this, the "Living Shorelines Australia" (https://livingshorelines.com.au) database was created. This inventory inventory is the first step in identifying best practice, which will inform the future development of detailed technical design guidelines for implementing different nature-based methods in Australia. Outputs • A national inventory of existing implemented nature-based solutions to mitigate coastal hazards [dataset] • Final Project Report [written]
-
This record provides an overview of the NESP Marine and Coastal Hub small-scale study - "OzSET: Integration and publication of the Australian Surface Elevation Table dataset". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Australia’s coastal floodplains and wetlands provide essential ecosystem services and have immense cultural value. They regulate water quality, moderate flood and storm damage, and provide habitat for marine life including commercial fish and shellfish species. These environments are threatened by accelerating rates of sea-level rise. A national approach is needed to monitor and assess the way coastal floodplains and wetlands are changing in response to sea level rise. A useful measure of resilience is the extent to which coastal wetland sediments can accrete vertically at a rate matching that of sea-level rise. Assessing the resilience, or vulnerability, of these environments requires measurements of rates of vertical accretion, subsidence and elevation gain across a range of coastal settings. The Surface Elevation Table-Marker Horizon (SET-MH) technique measures the vertical accretion of coastal wetland sediments. This enables assessment of whether wetlands are keeping pace with sea level rise (measured at tide gauges), or subsiding relative to local sea level rise and thus vulnerable to permanent inundation and loss. Australia’s network of Surface Elevation Tables is one of the most extensive in the world, consisting of over 200 benchmark monitoring stations from Westernport Bay, Victoria to Darwin Harbour, NT. The network has developed largely without national coordination, and the data gathered have not been readily available to the research community or research users. This project collated SET data on accretion, subsidence and elevation change in mangroves, saltmarshes, seagrasses and tidal freshwater forests, and provides an initial analysis of accretion and surface elevation trends. This information is vital to coastal risk assessment, estimating blue carbon sequestration, and modelling potential predicted changes in other ecosystem services. Outputs • Collation of data from existing Surface Elevation Table (SET-MH) stations [dataset] • Final Technical Report